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J. Phys. A :  Gen. Phys., Vol. 5, February 1972. Printed in Great Britain 

Loss of gravitational mass of a rotating rod 
as outgoing gravitational radiation 

M A ROTENBERG 
Division of Science, University of Wisconsin-Parkside, Kenosha, Wisconsin, USA 

MS received 18 May 1971, in revised form 26 August 1971 

Abstract. The solution of the gravitational field equations of general relativity is obtained 
for the metric field of a rotating rod. A Schwarzschildian correction term is found that 
represents a steady diminution of mass of the rod on account of the gravitational waves 
emitted. 

1. Introduction 

In studying gravitational waves from an isolated source of any form without special 
symmetry, Sachs (1962) found in his selected metric? an expression representing a 
monotonic decrease in mass of the source. The rate of this mass loss for a cohesive 
source was shown by Rotenberg (1971) to be equivalent to the rate at which energy is 
carried away by the waves, so that Sachs’ result gives physical significance to these 
waves. To arrive at his result, Sachs used a method of approximation which had been 
previously introduced by Bondi for an axially and reflection symmetric source (Bondi 
1962, Bondi et a1 1962) and which involves the expansion of the metric tensor in negative 
powers of a suitably defined radial distance r. He then solved the empty-space field 
equations3 

Rik = 0 (1.1) 
of general relativity by equating to zero coefficients of successive powers of r -  in R,, . 
Unfortunately, as pointed out by Bonnor and Rotenberg (1966), this method has one 
serious drawback : the expansion can be shown to contain terms diverging with time. 
In view of this, a different approximation method, one involving a double-series expan- 
sion of the type introduced by Bonnor (1959), is applied to the special case of a rotating 
rod to confirm that the rod steadily loses mass (in the second approximation to the 
field equations (1.1)) at the rate at which radiation energy is transferred from the rod. 
Comparing this result with the one mentioned above from Rotenberg (1971), we see 
that Sachs’ expression for the mass decrease is substantiated, at least for the particular 
source. 

In $ 2  the spinning rod is described at considerable length. The double-series 
approximation method is presented in $ 3, and the Sachs metric, selected for use by 

Henceforth referred to as the Sachs metric, of which the earlier axisymmetric version is the Bondi metric, 
invented by Bondi (1960). 
$ In this paper, a Latin index runs from 1 to 4, a Greek index from 1 to 3 ; the summation convention applies 
to both indices. 
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this method and resulting in drastic reduction in calculation, is exhibited in 9: 4. Like 
the Bondi metric, this one prevents the appearance of terms in r -  In r in its solution 
at any stage of approximation. Such terms would occur if harmonic coordinates were 
employed, as in a work by Fock (1959, $ 87), and also in works by Clark (1941, 1947) 
related to the topic of this paper. The Sachs metric uses a different coordinate system 
and has the merit of satisfying the usual boundary conditions at spatial infinity. In $ 5,  
the external solution of the linear approximation (to the field equations (1.1)) is derived, 
for the rotating rod, in coordinates of the Sachs metric. The corresponding solution of 
the second approximation, calculated in $6,  is shown to contain a Schwarzschildian 
correction term referring to a rate of loss in gravitational mass of the rod equal to the 
rate at which energy of radiation is emitted. The more complicated calculations are 
relegated to the Appendix. 

2. The rotating rod 

It would be convenient to provide the rod with some mechanism that could set it in 
spinning motion for a finite period of time after which the mechanism would arrest 
the motion. Then the Schwarzschildian term of order r -  in the final stationary metric 
for the rod could be compared with that in the initial stationary metric to determine 
any secular diminution in mass suffered by the rod over the period of rotation. 

For simplicity, let the mechanism be a uniform circular ring passing through two 
holes in the rod so situated that the centre of the ring coincides with the centre of mass 
of the rod, and let the common centre of mass be chosen as the origin 0 of a (pseudo) 
rectangular Cartesian coordinate system Oxyz. Initially, the ring alone rotates in the xy 
plane about 0 with constant angular velocity wo,  friction between the ring and the 
rod being so negligible that the rod practically remains in a stationary position. Then, 
shortly before t = 0 (at time - t o ,  say), friction is set up between the ring and the rod 
by a clamping device, smoothly starting the rod in motion so that the entire system 
rotates about 0 at constant angular velocity w c wo from time t = 0, when the rod 
assumes the position chosen as the x axis, to time t = T. Finally, the rod is brought 
smoothly to rest (with the ring rotating at its former angular velocity wo about 0) 
during a short interval t l  : this is achieved by a separating recoil device. 

It can be shown that outside the interval - t o  < t < T+tl the system produces a 
stationary field, since the only moving component then is the ring, which rotates uni- 
formly in its own constant position. Thus we have a rotating system emitting gravita- 
tional sandwich waves during the interval - to  < t < T+t, ,  outside of which the field 
is stationary and can be proved to take a Schwarzschild form (such as the form (4.3) 
in the Sachs metric) up to order r - l .  

Although the proof of the foregoing is a subject for a future paper, it is well to justify 
here to a certain extent the assumption that a uniform rotating ring produces a field 
which is asymptotically Schwarzschildian. This is done by the following consideration : 
giving plausible reasons, Newman and Janis (1965) suggested that the ring may be 
represented by the Kerr metric, which we write in the form (see Boyer and Price 1965) 

ds2 = - dr2 - 2b sin28 dr dq5 -(rZ + b2) sin28 dq52 - ( r2  + b2 cos2f?) de2 

2mr 
r2 + bZ cos28 

+dt2 - (dr + b sin2B dq5 + dt)2 
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where m is the mass and b the radius of the ring and where (r ,  8,4) are (pseudo) spherical 
polar coordinates of the field point P. Observing that 

2mr 
r2 + b2 cos20 

= 2mr-' +O(r- , )  

and that contributions from the coefficients g,,, g,,, g24, g,, of the metric are divided 
by r and the coefficients g Z 2 ,  g23, g,, are divided by r2  on transformation from co- 
ordinates ( r ,  o , $ )  to coordinates (x, y ,  z )  we fmd that, on neglect of expressions of order 
r - 2  for large r,  the metric (2.1) becomes 

ds2 = - dr2 - 2b sin28 dr d$ - r2 sin28 d$, - r2  d8' 

+dt2 -2mr-'(dr+dt)2. (2.3) 

Carrying out the coordinate transformation of the form 

4 = $* + b f m  with f ( r )  2 r -  for large r (2.4) 
dropping the asterisks and ignoring terms of order r - ,  for large r,  we arrive at the 
following form of the Schwarzschild metric for a central particle of mass m : 

(2.5) 
(see Rotenberg 1964 p 62, equation (62a), Boyer and Price 1965, equation following 
equation (1)). Thus the field of the rotating ring is asymptotically Schwarzschildian. 

To conclude, we shall assume that any change in mass of the system due to the 
smooth transition of short duration from rest to motion for the rod or from motion to 
rest is negligible in comparison with the total loss in mass of the system during the spin 
of the rod, especially if it takes place for considerable time?. This assumption is justified 
towards the end of 9 6 ,  where it is also shown that a rod that continually rotates, without 
a mechanism to start and terminate its spin, likewise decreases its mass steadily on 
account of the waves emitted. 

ds2 = - dr2 - r2(d02 + sin20 d$2) + dt2 - 2mr-'(dr + dt)2 

3. The double-parameter approximation method 

We briefly describe below the method of approximation to be used in this paper. 
Invented by Bonnor (1959), this method may be applied to the external field of any finite 
coherent gravitating source. 

Let m be the total mass of the source, so that, if q k  is the material energy tensor, then 
in the linear approximation (to equation (1.1)) 

r 
m = J T4, dx dy dz 

V 
(3.1) 

where Vis any space volume enclosing the source and T4, is measured in pseudogalilean 
coordinates (x, y ,  z, t).  Let a be any chosen constant having the dimension of length. 
Then the coefficients of the metric are to be expanded as doubly-infinite convergent 
series 

(3.2) 
p = l  s = o  

t Accordingly, we shall refer to the period of rotation of the rod as0 < t < T ,  not precisely as - to < t < T + f , . 
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in ascending powers of the constant parameters m and a ; g i k  and g j k  are independent of 

m and a, and gi ,  constitute the flat space-time metric. (Cf Bonnor 1959, Rotenberg 1964 
9: 2.3, Bonnor and Rotenberg 1966.) It can be shown that the external solution of the 
linear approximation (to equation (1.1)) is the part of the expansion (3.2) linear in m, 

(00) (PS) 

( 0 0 )  

s = o  

(Rotenberg 1964 Appendix (A.l), 1968a, 1968b and 1971). 
Substituting the expansion (3.2) into the field equations (l.l), picking out the 

coefficient of mpas from the result and equating it to zero, we obtain a set of ten second- 
order differential equations, called the (ps) approximation, which assume the forms 

(PS) 
The left hand sides of these equations are linear in g i k  (and their derivatives), while the 

(s*) 
right hand sides are nonlinear in g i k  (and their derivatives), known from earlier approxi- 

mation steps. Thus, any (1s) approximation is linear and homogeneous in g i k  and their 

derivatives (Ylm = 0) and, consequently, pertains to the linear approximation. The 
complete set of (1s) approximations (s = 0,1,2,. . .), along with the trivial (00) approxi- 
mation corresponding to flat space-time, make up the linear approximation. For 
p 2 2, the (ps) approximation is nonlinear : the complete set of (2s) approximations 
(s = 0,1,2, . . .)constitutes the second approximation, the complete set of(%) approxima- 
tions (s = 0, 1,2,. , .) forms the third approximation, and so on. 

The solution of the (ps) approximation, which is represented by the g i ,  satisfying 
equations (3.4), is also simply referred to as the (ps) solution. Alternative expressions 
denoting the (1s) solution for s 2 1 are 2s pole wave (solution) and (1s) wave; and the 
2s pole wave solutions, together with the static monopole solution represented by 
( 0 0 )  (10) 
g ,  + mg,,, form what is known as the multipole wave solution (of the linear approximation), 
(3.3). Evidently, from the second of equations (3.3), the dipole wave g i k  is absent from 
the multipole wave solution. The leading wave-like terms in this solution are the 
quadrupole wave (involving ma2), the octupole wave (involving ma3) etc (Boardman and 
Bergmann 1959, Bonnor 1963, Rotenberg 1964, Appendix (A.1)). 

It is a well known result that the 4-momentum of an isolated coherent gravitating 
source remains constant in the linear approximation (Rotenberg 1964, Appendix (A.2)). 
A steady change of 4-momentum may take place in the second approximation, and it is 
our object to show that there does occur a steady diminution in the mass of the rotating 
rod ; this is achieved in 6 6. 

(1s) 

(1s) 

(PS) 

(11) 

4. The Sachs metric 

In solving the important approximations for the spinning rod we shall employ the 
metric of Sachs (1962); this may be presented in the form 

ds2 = - r2(B de2 - 21 sin 8 de  dq5 + C sin28 d42)+ D du2 
+ 2F dr du + 2Gr de du + 2Jr sin 8 dq5 du 

BC-Z2 = 1. 



202 M A  Rotenberg 

In this, B,  C, D, F,  G ,  I ,  J are functions of the coordinates (r ,  8,4, U), which are defined as 
follows : r is a null coordinate representing something like the distance along a radial 
ray from the origin 0 ; 0 and 4 are respectively the pseudopolar and pseudoazimuthal 
angles constant along a radial ray ; and the time-like coordinate U, also constant along 
a radial ray, closely corresponds to the retarded time t - r of flat space-time ; thus the 
null coordinate curves r = variable (namely radial rays) generate the null coordinate 
hypersurfaces U = constant. The Sachs metric (4.1) is an extension of the axisymmetric 
metric of Bondi (1960, 1962) and represents fields with no special symmetry. 

In coordinates of the Sachs metric, flat space-time is represented by 

ds2 = - r2(dB2 + sin% d@) + du2 + 2 dr du 

ds2 = - r2(dB2 + sin20 d@) + (1 - 2mr- ') du2 + 2 dr du 

(4.2) 

and the external Schwarzschild space-time by 

(4.3) 

In accordance with the expansion (3.2), the coefficients of the metric (4.1) will have 
m being the total mass of the spherically symmetric source. 

similar expansions given by 

( P S J  x x  
- r - 'g , ,  = B = 1 + 1 mPasB 

p =  1 s = o  

( P S J  Z L  

-r- '  cosec28 g,, = C = 1 + C C mpasC 
p =  1 s = o  

(PSI x L- 

g4, = D = 1 + E E mpasD 
p =  1 s = o  

(PS) x x  

g14 = F = 1+ 2 1 mpasF 
p = l  s = o  

(4.4) 

( P S I  
1. x 

r-'g24 = G = 1 E mpasG 
p = l  s = o  

( P S I  x 31 

r-'cosec e g,, = I = E 1 mPasf 
p =  1 s = o  

(PSI x x  

r -  cosec 8 g,, = J = 1 1 mPaSJ 
p =  1 s = o  

(PSI ( P S J  ( P S I  ( P S I  (PSI (PSI 

in which B ,  C, . . . , J are functions of (r ,  e,$, U), and B,  C and I are related by the second 
of equations (4.1). The notation (4.4) will henceforth be used. 

5. The (1s) approximations 

For the rotating rod we derive here suitable external solutions of the leading (1s) 
approximations, given, in coordinates (r ,  8,4, U) of the Sachs metric employed here, by 
equations (A.1) to (A.lO) of the Appendix with P = Q = . . . = W = 0. To save space 
we use the external multipole wave solution, of the linear approximation, obtained in 
these coordinates by Rotenberg (1971) for any bounded cohesive source with its centre 
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of mass chosen as the origin 0. Explicitly to the quadrupole wave contribution it is? 
(1s)  ( 1 s )  

B =  1+ maSB C =  1 -  1 maSB 
s = 2  5=2 

O0 ( 1 s )  ( 1 s )  
D = 1 - 2 m r - ' +  1 maSD F = l  G = 1 w s G  (5.1) 

s = 2  s =  2 

in which the monopole (10) solution is the sole surviving component 
(10) D = - 2 r - I  

the dipole (11) wave solution is nonexistent 
( 1 1 )  
g i k  = 

and the quadrupole (12)  wave solution is given by 
(12)  
B = (n,,2n,,2 -cosec28 n , , 3 n p , 3 ) ( r - 1 k ~ p + r - 3 k u p )  
( 1 2 )  
D = (-- 3n,n, +6,,)(2r-'k:,  +2r-2k&,+r-3kup)  
( 1 2 )  
G = n,n,,2{2r- 'k:,  + 2 r - 2 (  - 2kL, + a,,,) - 3r-3k, , )  
( 1 2 )  
I = - 2  cosece n, ,2n, ,3(r- 'k~,+r-3k, , )  

J = cosece 
(12)  

( 2 r -  'k:,  + 2 r - 2 (  - 2kb, + a,,) - 3r-3k, , } .  
In equations (5.4) the notations are 

def x n =.2=-- 
r r 

(5.4) 

(5 .5)  

a comma subscript , 2  or , 3  denotes differentiation with respect to 0 or 4, respectively ; 
the quantities 

k,, 'kf m - 1 a - 2  JV X , X ~ T ~ ~  dx dy dz 

(V being any space volume containing the source and T44 being measured in pseudo- 
galilean coordinates x i  = (x, y ,  z, t ) )  are to be evaluated for retarded time U = t - r and 
a prime indicates differentiation with respect to the argument U ;  finally 

del  
a,, = m - 1 a - 2 A , ,  (5.7) 

where A,, is the angular momentum (in pseudogalilean coordinates xi) of the system 
about 0. All the (1s) solutions are of order r - l  

(1.) t That F = 0 for any s > 0 is evident from equation (A.ll), since the arbitrary function q(O,4, U) should 
be chosen as zero, in order that the galilean conditions at spatial infinity be satisfied by the (1s) metric. 
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It can be verified via lengthy but straightforward calculations that the above (10) 
and(l2)solutionssatisfythe(ls)fieldequations(A.l)to(A.lO)withP = Q = . . . = W = 0. 

For carrying out the calculations of the next section it is sufficient to retain the terms 
of order r - '  in the (12) solution (5.4). Consequently, on application of this solution to 
the spinning rod (and ring), only computation of k,,  from the geometry of the rotating 
system is required, not of a,,. From equation (5.6) and the fact that T44 therein represents 
the material density (in the linear approximation), the nonzero k,, are readily found to 
have the following values for the spinning system throughout the interval 0 ,< U 6 Tof 
the spin of the rod : 

k , ,  = m-'a-2(zCOS2wU+fIO) 

k , ,  = m-'u-21coswusinou (5.9) 

k , ,  .= m- 'a -2 ( I  sin20u++Zo). 

In these, I and I ,  denote the moments of inertia, about 0. of the rod and ring, 
respectively. 

We now substitute equations (5.5) and (5.9) into equations (5.4) to obtain the 
appropriate (12) solution for the rod and ring during the period 0 d U ,< T of the 
rotation of the rod. During the substitution we come across terms of order r -  involving 
expressions of the forms 

(cos24 -sin24)(cos2wu -sin2wu)+4 cos Q, sin 4 cos QU sin wu 

(cos24 - sin24) cos wu sin o u  -cos 4 sin 4 (coszwu - sin2wu) (5.10) 

as factors. These are easily seen to reduce to 

cos(2ou - 24) f sin(2wu - 24) (5.11) 

respectively. With these simpler forms adopted, the resulting (12) solution, expressed 
explicitly to order r -  ', turns out to be (for 0 d U Q T) 

( 1 2 )  
B = - 2h02r- '(2 - sin2@ cos(2wu - 24) + O(r- 3, 

D = 12hw2r-' s in28cos(2wu-2~)+O(r-2)  
( 1 2 )  

( 1 2 )  
G = -4hwZr- 's in8cos8cos(2wu-2~)+O(r-2)  

I = 4hw2r-' cos 8 s i n ( 2 w ~ - 2 4 ) + O ( r - ~ )  
(12) 

(5.12) 

(12)  
J = -4hwzr-'sin esin(2wu-2&+o(r-2) 

hdzf , , , - la-21. (5.13) 
where 

Equations (5.2), (5.3), (5.8) and (5.12) are employed in the next section. 

6. The (24) approximation 

The lowest (2s) approximation in which a secular loss in mass of any isolated coherent 
source might appear is the (24) one, for the following reason (see also Rotenberg 1964, 
9: 4.7, Bonnor and Rotenberg 1966, Rotenberg 1968b). 
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The solution of any (ps) approximatidn is indeterminate to the extent of a comple- 
mentary solution, that is, a solution of 

aim standing for the left hand sides of equations (A.l) to (A.lO). However, we shall 
assume that the functions representing the essential sources of the wave field have 
already been chosen for the 2s pole waves of the linear (1s) approximations 

No fresh source functions are to be employed other than those which are required for the 
satisfaction of the inhomogeneous equations (A.l) to (A.10), which are nonsingular for 
r > 0 and which yield galilean conditions for the metric at spatial infinity. 

Reverting to the (2s) approximations for s = 0 to 4, we note first that the (20) 

approximation vanishes, since the g i ,  of any (PO) approximation is obviously the pth 
approximation (mP contribution) to the Schwarzschild-Sachs metric (4.3), and this mp 
contribution is absent from this metric when p 2 2. The (21) approximation vanishes 
too, because from equation (5.3), there are no (1 1) terms to produce with the (10) terms a 

nonlinear 'PI,,, in equation (3.4). Thus, in accordance with our agreement to withhold 

new source functions unless they become necessary, gik and g i ,  must be put zero. 
The (22) and (23) approximations are not zero but, because of equations (5.2) and 

(5.8),  they are of too high order of r -  to yield any significant changes of order r -  in the 
metric (see table 1 of the Appendix). 

The (24) approximation is made up of equations (A.l) to (A.lO) with the nonlinear 
quantities P, . . . , W on the right presented in table 2 of the Appendix for the interval 
0 < U < T of rotation of the rod. Use has been made of equations (5.2), (5.3), (5.8) and 
(5.12) in the compilation of table 2. 

By using this table 2 in the solution (A.ll) to (A.16) of the approximate field 
equations (A.l) to (A.10), and by following carefully the procedure outlined in the 
Appendix with regard to utilizing the solution, we eventually obtain the (24) solution 
given below for the rod during the interval 0 < U < T of its spin, and satisfying the (24) 
approximation to the order indicated in the right column of table 2t. 

( P O )  

(21)  

( 2 0 )  (21) 

(24) 
B = r - { h206u(ys2 - As4) -&h205(s2 + s4) sin(4ou -44)) 

+ h ' ~ ~ r - ~ { ( 8  -8s2 +s4)+s4cos(40u-44)) +O(rW3)  (6.3) 

+ h 2 ~ 4 r - 2 ( ( 8  -8s' +s4)+s4 cos(4wu-4+)} +O(r-3) 

(24) 
C = r-'(h206u( -~ls2+&s4)+~h2w5(s2+s4)sin(4ou-4~)} 

(6.4) 
(24)  
D = r - ' ( ~ h 2 0 6 u - ~ h 2 0 5 s 4  sin(4ou-44)) 

+ h ' ~ ~ r - ~ ( (  -4 + 8s2 - 2s") - 3 s 4  cos(4ou -44)) + O(r- 3, (6.5) 
(24)  

((8-8s2+s4)+s4 cos(4ou-44)) +O(r-4) (6.6) F = -Lh2W4r-2 
4 

t The details have been omitted to save space. These are to be included in a future paper, in which the complete 
(24) solution will be calculated. 
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( 2 4 )  
G = k 2 0 6 r - ' u (  - ~ s c + $ ~ ~ c ) - ~ k ~ o ~ r - ~ ~ ~ c  cos(4ou-4#~)+ O(r -3 )  (6.7) 

(6.8) (?= k 2 0 5 r ~ ' { ~ s 2 c - ( ( m s 2 c + ~ s 4 c )  cos(4ou-44)j + O ( C ~ )  

(?i k 2 0 5 r -  ' {($s - 6s3) + i s 5  cos(4wu - 44)) 

+ r - 2 {  - ~ k 2 0 5 ~ ~ + k 2 ~ 4 (  -e53 +&55) sin(4wu-44); 

+ o(r- 3 )  (6.9) 
where s = sin 0, c = cos 8. 

Disregarding in the above solution static and periodic terms of order r -  ' and terms 
of order r-", n > 1, which do not represent any permanent change of order r -  ' in the 
metric, we have 

(6.10) 

(24)  ( 2 4 )  (24)  
F = I = J = 0. 

For U < 0 (before commencement of the spin of the rod) this solution vanishes ; thus, as 
expected, there is nothing of order r -  to add to the initial stationary field. For U 3 T 
(after termination of the spin of the rod) the solution (6.10), when subjected to the 
coordinate transformation 

r = r* +m2a4k206T( - ~ + $ s * 2 - & * 4 )  

= %*+m2a4k206Tr*-1 (~s*c*-~gS*3c*)  

4 = 4* U = ~ * + m ~ a ~ k ~ o ~ T ( - - $ ? $ s * ~ + & * ~ )  

(6.11) 

with s* = sin %*, c* = cos %*, yields the sole term 

= 6$h206 Tr* - 1 (6.12) 

while the lower (ps) solutions are unaltered and the conditions of the Sachs metric 
remain satisfied. Combining the (24) solution (6.12) (asterisks omitted) with the mono- 
pole solution (5.2), we obtain for the final stationary field 

ds2 = - r2(de2 + sin26 dc$2) + { 1 - 2(m -y1206T) r -  1\ du2 + 2 dr du. 
(6.13) 

This metric is of the Schwarzschild-Sachs form (4.3), and in it the expression 

Am = -Y.1206T (6.14) 
clearly shows up as a correction to the Schwarzschild mass of the system, the rod plus 
the ring. 

Suppose p is the contribution to the change (6.14) of mass of the system due to the 
smooth transitions for the rod from rest to motion and vice versa. This, being inde- 
pendent of the duration T of the spin of the rod, will clearly account for only an 
infinitesimal part of Am in equation (6.14), owing to the shortness of the intervals t o  and 
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t ,  of the smooth transitions. Indeed, the rate at which the system loses mass during the 
constant spin of the rod is, by virtue of equation (6.14) 

_ _  dm - - -Am+p = 21.IZo6+E, 
du T 5 T 

So, as T -+ CO, equation (6.15) will eventually give 

dm 
du 5 

---Io. 6 

(6.15) 

(6.16) 

We therefore conclude that a rod rotating indefinitely, without any attached device to 
start and stop its motion, steadily loses mass at the rate (6.16). This accounts for the 
rate of radiation energy emission given in Eddington (1924 p 251) by the familiar 
expression on the right of equation (6.16). 

Appendix. The approximate field equations for the Sachs metric and their solution 

The (ps) approximation for the Sachs metric (4.1), which is the contribution of mpas in 
equation (1.1) formed by insertion of the expansions (4.4) in equation (l.l), consists of the 
ten equations below. To save printing the symbols (ps), which ought to have been 
placed above the capital letters, have been omitted throughout the Appendix. 

2R,, = 0: -4r-'F, = P (A. 1) 
2r-'R,, = 0: B, , -2Bl ,+2r - ' (B , -B4+D1-Fl -G12)  

+ r-'( - B Z 2  +B,, cosec28- 3B, cot 8+2B+2D+2F2, -4F -4G2 

-2Gcot8+21,, cosec8+2l3cosec8cot8-2J,cosec8) = Q (A.2) 

- G ,  cot 8 - J i 3  ~ o s e c 8 ) + r - ~ ( - B , ~ + B ~ ~  cosec28-3B,cot8+2B 

+2D+2F3, cosec28+2F, cot 8-4F-2Gz-4G cot 8+2Iz3  cosec 8 

2r-' cosec28 R,, = 0: - B, ,  +2B14 +2r-'( -Bl +B4+D,  - F ,  

+2l3cosececot8-4J,cosec8) = R ('4.3) 

+J,,cosec8)-r-Z(D,,+D,,cosec28+D,cot e) = S (A.4) 

+2r-'(-FZ+G) = L (A.5) 

+ r - 2 ( - ~ z 2 - ~ 3 3 ~ ~ ~ e ~ 2 8 - ~ z  cot 8 

+ G , + G c o t 8 + J 3 c o s e ~ 8 )  = M ('4.6) 

2R,,= 0 :  -Dl l  +2F14+ 2r-'( - D ,  - D ,  +2F4+ GZ4+ G, cot 8 

2r-'R1, = 0: -G11+r-1(-B12-2B1 c o t 8 + F , , - 2 G , + I 1 3 ~ ~ ~ e ~ 8 )  

2R,, = 0 : - D ,  , + 2F14 + r -  l (  - 2 0 ,  + G,, + G, cot 8+ J I 3  coset 8) 

2r-'RZ4 = 0: - G, + G14 + r -  '( -BZ4 -2B, cot 8 - D , ,  +Fl, + F24 

-2G, -G,+Z3,cosec8)+r-2(-G33 cosecZ8+J23 cosec8 

+ J~ cosec e cot e) = N (A.7) 
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2r- cosec ORl3 = 0: - J,, + r-’(B13 cosec 8+ F , ,  cosec 8+ I , ,  

2r-’ cosec ORz3 = 0: - I ,  , + 2Z14 + r -  ’( - G13 cosec 8 - 21, + 21, - J ,  

+ J ,  cot e) + r -  2(2F23 cosec 8 - 2F,  cosec 8 cot 0 - G, cosec 6’ 

- J ,+JcotO)  = I/ iA.9) 

2r- cosec OR,, = 0 : - J ,  , + J14 + r -  1(B34 cosec 0 - D ,  , cosec 

+ F, ,  cosec (3 + F,, cosec 8 + 124 + 21, cot 8 - 2J1 - 5,) 

+r-’ (G, ,  cosece-G,cosec%cot 9 - Jz2 - J2co t  8 

$21, ~ o t ~ - 2 J , ) + 2 r - ~ ( - F ~ c o s e c ~ + J )  = Cr (A.8) 

+ J cosec28) = W. (A.lO) 

Here, a subscript 1,2, 3 or 4 after B, D, F ,  G, I or J indicates differentiation with respect 
to r,  8, Cp or U, respectively-a notation to apply to any nontensorial symbol, unless 
otherwise stated or implied. Use has been made of the second of equations (4.1), so that 
C does not appear in the above equations. The linear terms of these equations all appear 
explicitly on the left, while the nonlinear terms form the quantities P,. . . , W on the 
right. The latter are zero in the linear (1s) approximations; in the nonlinear (ps) 
approximations (p 2 2), they are determined from solutions of earlier approximations. 

It can be shown that from the first seven equations of the above (ps) approximation 
can be derived the following six equations? : 

F = -$  rPdr+r](O,Cp,u) (A. 11) 

0’0 gf D ,  , -2D14+ 2r- ‘ ( D ,  + D 4 ) + F 2 ( D 2 2  + D z  cot 8 + D 3 ,  cosec’8) 
s 

= -S+2(Fl +W’F+r - ’X) ,  (A.12) 
def 0°C = r(Gi 1 1  -2G114)+ (3G, 1 -2G14) 

+ r- { G l Z 2  + 3Gl2 cot 8 + G,(cot20 - 1) + G13,cosec28+ 2G,j 

+r-2{-G2z-3Gzcot e+G(1-cotZ8)-G3,cosec28) 

= rL,-(rN),f2Dl,cot O+Fll2+2r-’Fz4 

+ {r-’(XZ + 2X cot e)} , (A. 13) 

J = sine (rD,-G2+r-’X)d+-cos8 GdCp+z(r,O,u) (A.14) s s 
def 

O”’B = Bl1-2Bl4+2r-’(Bl-B4) 

= %Q - R) - A4 - D ,  + 2F14 + 2r- ’( - D ,  + Glz)  + 2r-2( - Fz2  + G2) 
(A. 15) 

+ 2 COS 8 B dCp + p(O,Cp, U) + v(r, 8, U) s (A.16) 

t The proof will be given in a future paper. 
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with 

X = { r 2 ( M - 2 F , , ) + ( F 2 , + F 2  cot e + F 3 ,  cosec28)} dr+x(8,4, U) def s 
(A.17) 

and 

q(e, 4, U), x(e, 4, U), z(r,  e, U), p(e, 4, U), v(r, e, U) (A.18) 

as five functions of integration. This. set of equations may be regarded as the formal 
solution of the (ps )  approximation ; since, F is immediately known from equation (A.l  l ) ,  
so that the right hand side of equation (A.12) is readily evaluated. The differential 
equation (A.12) can be solved for D, to the required degree of accuracy, by using as a trial 
solution an expansion in ascending powers of r- '  for the leading terms. Subsequently, 
the differential equation (A.13) can be solved for G by a similar procedure, as the terms 
on the right of this equation are now known. The results so far enable J to be calculated 
at once from equation (A.14), and the differential equation (A.15) to be solved for B by 
employment of a trial solution similar to that for D or G. This in turn allows I to be 
computed immediately from equation (A. 16). 

During the foregoing process of solution, values for the five arbitrary functions (A.18) 
and for those emanating from the differential equations (A. 12), (A.13) and (A.15) must be 
chosen with extreme care so that the @s) solution using them in fact satisfies all the ten 
(ps) field equations, including the last three, and is regular for all 8, 4 and U and for all 
r > 0. I t  is desirable that the (ps) solution also meet the galilean conditions at spatial 
infinity. However, no additional values are to be assigned to these arbitrary functions, 
in accordance with the agreement set up in 9: 6 not to introduce fresh source functions 
in the nonlinear approximations without a purpose. 

Table 1. 

Nonlinear terms in the (22)  and (23)  
approximations error 

P = L = M = U = O  0 
Q = R = S = N = V = W = O  r - 4  (at least) 

Order of 

Table 2. 

Nonlinear terms in the (24)  approximation Order of 
error 

P = - 2 h 2 u 4 r - 4 { ( 8 ~ 2  +s4)+s4E} 

S = 8h2u6r -2 {  - (8c2+s4)+s4 i ; }  - 8 0 h 2 u 5 r - 3 ~ 4 S  
L = 16h2u4r-4{(2cot  ~ - 5 s c + s 3 c ) + s 3 c i . }  

N = 16h2w5r-3s3~S  
U = -4h2u4r-4s3S 
v = o  

W = 2 4 h 2 0 5 r - 3 ( ( 4 s - 3 s 3 ) + ~ 3 ~ )  

Q - R  = -8h2 u r  5 - 3  s s  4- 

M = -4h2w5r-3s4S 
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Tables 1 and 2 give values for the nonlinear expressions P ,  . . . , Win the (22), (23) and 

s = sin 8, c = cos 0 S = sin(4ou - 44), i. = cos(4ou - 44)  (A.  19) 

have been employed. Tables 1 and 2 refer to the interval 0 6 U 6 T of rotation of the 
rod. 

(24) approximations, where the notations 
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